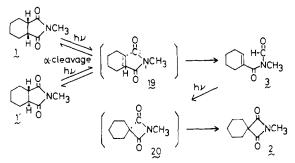
Azetidine-2,4-diones via Photoinduced Ring Contraction of Succinimides

Sir:


In recent years the photochemistry of alicyclic imides has received considerable attention. Chiefly, the formation of oxetanes with olefins,¹ hydrogen abstraction,² and α -cleavage reactions^{2c,3} have been reported, in which some interesting properties characteristic of imides are disclosed. In this communication we report a photoinduced ring-contraction reaction of 1,3,4-trialkyl-substituted succinimides.

After irradiation of an acetonitrile solution (0.12 M) of *cis-N*-methylcyclohexane-1,2-dicarboximide (1) with a 120-W

low-pressure Hg lamp for 7 h, chromatography of the products on silica gel gave a ring-contracted product, N-methylcyclohexane-1,1-dicarboximide (2, 43%), together with a small amount of N-formyl-N-methyl-1-cyclohexene-1-carboxamide (3, 7%) (yields are based on the amount of 1 consumed).⁴ The starting material recovered (60%) was partly isomerized to its trans isomer 1'. The structure of 2 was deduced from its spectroscopic properties: ¹H NMR (CDCl₃) δ 1.2-2.0 (m, 10 H), 2.89 (s, 3 H); IR (KBr)⁵ 1822 (w), 1710 (s), 945 cm⁻¹; m/e (rel intensity) 167 (M⁺, 0.7), 110 (100).⁶ When treated with methylamine, 2 gave 4 quantitatively, and further photolysis of 2 in methanol gave 5 (35%) and 6 (60%),⁷ the reported characteristics of azetidine-2,4-diones.^{3a,5a} The ring-opened imide 3 showed reasonable spectral properties: ¹H NMR $(CDCl_3) \delta 1.6-1.9 (m, 4 H), 2.1-2.5 (m, 4 H), 3.15 (s, 3 H),$ 6.24 (m, 1 H), 9.21 (s, 1 H); 1R 1718, 1660 (s) cm⁻¹; m/e 167 (M^+) . It was identical with a sample prepared from 1-cyclohexenecarbonyl chloride and N-methylformamide. Similarly, irradiation of succinimide derivatives 7-12 gave the corresponding azetidine-2,4-diones 13-18, respectively (Table $1).^{8}$

This photoinduced ring-contraction reaction is most reasonably explained in terms of a mechanism shown in Scheme 1. First, 1 undergoes α -cleavage reaction to give a biradical 19 followed by two pathways: i.e., (i) reproduction of 1 or isomerization to its trans isomer 1', and (ii) formation of 3 via hydrogen abstraction by the carbamoyl radical from C-4 position.⁹ The generated compound 3 will absorb light once again to give a 1,4 biradical 20, which finally could collapse to aze-

Scheme I

0002-7863/79/1501-3670\$01.00/0

Table I. Yields^a of Azetidine-2,4-diones from Succinimides

Succinimides	Azetidıre-2,4-diones	mp (°C)	Yield (%)
NCH3	C V NCH ₃ 2	96-7	43
NC ₂ H ₅	Сурис ₂ н5 0 13	62-5	22
NCH3		38-42	51
H ₃ C O NCH ₃		58-9	26
сн ₃ 0 ₂ с 0 сн ₃ 0 ₂ с 0 10 сн ₃ 0 ₂ с 0 10	сн ₃ 0 ₂ с 0 исн ₃ сн ₃ 0 ₂ с 0 <u>16</u>	99-100	50
сн ₃ 0 ₂ с 0 сн ₃ 0 ₂ с 0 11	сн ₃ 0 ₂ с о мсн ₃ сн ₃ 0 ₂ с 17	Oil	25
СH3 СH3 СH3 Н3 12	С2 ^{H5} СH3 О 18	Oil	9

^a Yields are based on the amount of succinimides consumed.

Table II. Yields^a of 2 or 15 from 3 or 21

(CH ₂)n	Сн0 _ ¹ NCH ₃	hν CH ₃ CN	(CH ₂) _n – H NCH ₃
	Material	Product	Yield (%)
n=2	3.	2~	85
n=1	21	15	81

^a Yields are based on the amount of materials consumed.

tidine-2,4-dione **2**.¹⁰ The following experiments support this mechanism. First, at 254 nm the extinction coefficient of 3 (ϵ 1023) is about ten times larger than that of 1 (ϵ 100). Secondly, irradiation of an acetonitrile solution of 3 with a low-pressure Hg lamp gave 2 in 85% yield.¹¹ Thirdly, following the reaction by high pressure liquid chromatography, we found that the amount of 3 increases initially, but reaches a maximum after 1 h and then decreases gradually. The feature of the timedependent variation of the products in the reaction mixture is depicted in Figure 1. From Figure 1 we can see that the production rate of 2 rises slightly for the first hour, but then decreases; that is, there is an inflection point at $\sim l$ h from the beginning of the reaction and this point just corresponds to the maximum point for 3. The fact suggests that 2 could be formed via 3, though the other possibilities can not be excluded at the present. Since the isomerization of 1 to 2 was quenched by adding 1,3-but diene to a reacting mixture the α -cleavage reaction seems to proceed only from a triplet excited state.

In 1914 azetidine-2,4-dione was prepared for the first time by Staudinger and his co-workers, ¹² and some other synthetic methods have been investigated.^{5,13} It is also known that azetidine-2,4-diones are pharmacologically highly active and that 3,3-dialkyl-substituted derivatives have the especially short

© 1979 American Chemical Society

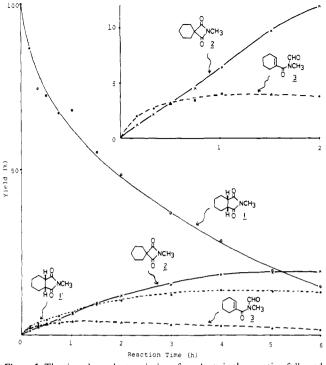


Figure 1. The time dependent variation of products in the reaction followed by LC. An acetonitrile solution (0.06 M) of 1 was irradiated with a 120-W low-pressure Hg lamp at 4 °C.

hypnotic effect.^{5a} The previously reported synthetic methods involve sluggish reactions and the yields are generally poor. Since our synthetic approach to azetidine-2,4-diones simply consists of photolysis of the related succinimides which are readily available and the products can be isolated on silica gel column chromatography with ease, this reaction provides a convenient synthetic method of 1,3,3-trialkyl-substituted azetidine-2,4-diones. Further, photolysis of ring-opened imides like 3 or 21 with a low-pressure Hg lamp results in much better yields (Table II). So far the reported photoinduced α -cleavage reactions of acyclic imides¹⁴ and lactams¹⁵ were primarily related to the fission of the C(O)-N bond, and that of the C(O)-C bond was significant in a few exceptional imides.³ The present example shows the generality and importance of α -cleavage reaction, especially the C(O)-C bond fission of alicyclic imides. Its scope and limitation are being studied.

Acknowledgment. We thank the staff of the Japan Electron Optics Laboratory for the measurement of the ¹³C NMR spectra. This work is supported in part by a grant from the Ministry to Education, Science and Culture, No. 347017.

References and Notes

- (1) (a) Maruyama, K.; Kubo, Y. J. Org. Chem. 1977, 42, 3215. (b) Maruyama,
- (a) Kanaoka, T.; Kubo, Y. *Chem. Lett.* 1978, 1107.
 (a) Kanaoka, Y.; Hatanaka, Y. *J. Org. Chem.* 1976, 41, 400. (b) Kanaoka, Y.; Okajima, H.; Hatanaka, Y. *Heterocycles* 1977, *8*, 339. (c) Nakai, H.; Sato, Y.; Mizoguchi, T.; Yamazaki, M.; Kanaoka, Y. *ibid.* 1977, *8*, 345. (2)
- (a) Scharf, G.; Fuchs, B. J. Chem. Soc., Chem. Commun. 1975, 244. (b) (3)Schutyser, J. A.; De Schryver, F. C. Tetrahedron 1976, 32, 251 (4) Quantum yield of disappearance of 1 was 0.59 and that of formation of 3
- was 0.3, at an early stage. (5) These three absorption bands are characteristic of azetidine-2,4-dlones.
- (a) Ebnöther, A.; Jucker, E.; Russi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; Süess, R.; Vogel, A. *Helv Chim. Acta* **1959**, *42*, 918. (b) Testa, E.; Fontanella, L. Justus Liebigs Ann. Chem. 1962, 660, 118.
- This peak (m/e 110) can be attributed to the cation radical of carbonylcyclohexane formed by the cycloreversion of 2. Compernolle, F.; De Schryver, F. C. J. Am. Chem. Soc. 1975, 97, 3909.
- Schryver, F. C. J. Am. Chem. Soc. 1975, 97, 3908. 4, 5, and 6, showed reasonable spectral data. Characterization data follow. 13: ¹H NMR (CCl₄) δ 1.26 (t, 3 H, J = 7 Hz), 1.3–1.9 (m, 10 H), 3.24 (q, 2 H, J = 7 Hz); IR (KBr) 1712 (s), 964 cm⁻¹. 14: ¹H NMR (CDCl₃) δ 1.8–2.2 (m, 10 H), 2.87 (s, 3 H); IR (KBr) 1840 (w), 1710 (c) DEF cm⁻¹ distribution (CDCl₃) δ 1.8–2.2 (m, 10 H), 2.87 (s, 3 H); IR (KBr) 144 (d), 1710 (8)(s), 955 cm⁻¹. 15: ¹H NMR (CCl₄) δ 0.96 (d, 3 H, J = 6 Hz), 1.1–2.1 (m, 9 H), 2.88 (s, 3 H); IR (KBr) 1720 (s), 950 cm⁻¹. 16: ¹H NMR (CDCl₃) δ 2.2–2.5 (m, 4 H), 2.8-3.1 (m, 1 H), 2.95 (s, 3 H), 3.25 (dd, 1 H), 3.72 (s, 6 H); ¹³C NMR

 $(CDCl_3) \delta 24.8 (q, N-CH_3), 31.9, 32.1 (t, -CH_2-), 42.0, 46.3 (d, >CH-), 52.1,$ 52.4 (q. Ο-CH₃), 69.0 (s. quaternary C), 170.6, 171.7, 172.6, 173.1 (s. >C==O); IR (KBr) 1730 (s), 963 cm⁻¹. 17: ¹H NMR (CDCl₃) δ 2.21 (t, 2 H, J = 8 Hz), 2.42 (1, 2 H, J = 8 Hz), 2.74 (s, 3 H), 2.94 (s, 3 H), 3.67 (s, 6 H); IR (CHCl₃) 1734 (s), 960 cm⁻¹. **18**: ¹H NMR (CCl₄) δ 0.98 (t, 3 H, J = 8 Hz), .30 (s, 3 H), 1.68 (q, 2 H, J = 8 Hz), 2.86 (s, 3 H); IR 1805 (w), 1720 (s), 945 cm⁻

- In the photochemistry of cyclic ketones analogous examples are reported. Chapman, O. L.; Weiss, D. S. "Organic Photochemistry", Vol. 3; Marcel (9) Dekker: New York, 1973; p 228.
- There are a few reports concerning similar intramolecular hydrogen abstraction. (a) Smith, A. B., III; Foster, A. M.; Agosta, W. C. *J. Am. Chem. Soc.* **1972**, *94*, 5100. (b) Hasegawa, T.; Watabe, M.; Aoyama, H.; Omote, . Tetrahedron 1977, 485.
- (11) Quantum yield of formation of 2 was 0.33.
- (a) Testa, E.; Fontanella, L.; Cristiani, G. F.; Mariani, L. Helv. Chim. Acta (13)1959, 42, 2370. (b) Poshkus, A. C.; Herweh, J. E. J. Org. Chem. 1965, 30, 2466
- (a) Kan, R. O.; Furey, R. L. Tetrahedron Lett. 1966, 2573. (b) Katsuhara, Y.; Maruyama, H.; Shigemitsu, Y.; Odaira, Y. Tetrahedron Lett. **1973**, 1323. (c) Kanaoka, Y.; Tsuji, T.; Koyama, K. *Chem. Pharm. Bull.* **1973**, *21*, 453
- (15) (a) Fischer, M. Chem. Ber. 1969, 102, 342. (b) Mazzocchi, P. H.; Thomas, J. J. J. Am. Chem. Soc. 1972; 94, 8282. (c) Mazzocchi, P. H.; Thomas, J. J.; Danisi, F. J. Org. Chem. 1979, 44, 50.

Kazuhiro Maruyama,* Takeshi Ishitoku, Yasuo Kubo

Department of Chemistry, Faculty of Science Kyoto University, Kyoto 606, Japan Received November 20, 1978

S₁ vs. T₂ Photoreactivity of β , γ -Unsaturated Ketones. **Temperature Dependent Photo-CIDNP of** 2-Cyclopentenyl Methyl Ketones¹

Sir:

Among the diverse facets of the photochemistry of β,γ -unsaturated ketones (β,γ -UK),² the mechanism of the allylic 1,3-acyl shift (AS), most commonly observed on direct irradiation only, has persisted as a prominent matter of debate. On the basis of earlier results, the AS was assumed to occur from the singlet n, π^* state (S₁) via a concerted process.² Only for β , γ -unsaturated phenyl ketones has the AS been shown to proceed via a radical-pair mechanism, predominantly from the n,π^* triplet, which is the lowest lying excited state of these compounds.³ Subsequently, AS from a short-lived T₂ state of prevalent n, π^* character has also been taken into consideration for β, γ -UK's with a lowest lying triplet π, π^* state.^{2b,c,4,5} While results of fluorescence studies remained inconclusive on this point,^{4,5} it has been unequivocally shown recently that the AS can indeed occur from the T₂(n, π^*) state of a β , γ -UK, 1c.⁶ CIDNP effects have been taken as evidence for all three of the current views on the AS mechanism.^{2c,3,7,8}

We now report results on the β , γ -UK's **1a-c** which allow the assembly of a more coherent, mechanistic picture of the S₁ vs. T₂ reactivity of these ketones. Photo-CIDNP effects from **1a-c** exhibited a remarkable temperature dependence in the range of -60 to 140 °C. They are interpreted in terms of an AS via radical pairs that originate from both the S_1 and T_2 states depending on the reaction temperature.

When a 0.1 M solution of $1a^{9,10a}$ in CD₃OD was irradiated at 45 °C in the modified ¹H probe of an FT NMR spectrometer,¹¹ CIDNP effects of the starting ketone (1a) and acetaldehyde (2) were observed (Figure 1B).¹³ Additional enhanced resonances were assigned to 1,2-dimethyl-3-methylenecyclopentene, R_{-H} , on the basis of previous evidence.³ Both CIDNP and product structures are in accord with the reactions summarized in Scheme I. At 45 °C, these reactions of 1a occur predominantly from S₁: all polarizations are readily rationalized in terms of reactions from a singlet radical pair, $\overline{\mathbf{R}\cdot\mathbf{R}'}$, when Kaptein's rules¹⁴ are applied using the respective radical parameters.15